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I. Summary

A study was undertaken to evaluate the possible adverse

effects on the lens of the eye and the skin due to exposure to

proton radiation during manned space flight.

The following information was considered of prime importance

in the evaluation:

1. Relative effects of different proton energies.

2. Relative effects of different irradiation regimes.

3. Relative effects of different radiation doses.

4. Relative latent period.

Consistent with limitations inherent within available

facilities and experimental design, every effort was made to

simulate actual proton irradiation which might be encountered in

space.

The New Zealand White rabbit and Beagle dog were chosen as

experimental models.

Proton energies for exposure included 10, 20, 30, 40 and 50

MeV.

Total doses received ranged from 37.5 rad to 2000.0 rad.
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Irradiation regimes included single acute exposures, daily

fractionated exposures and weekly fractionated exposures.

Animals were exposed and then maintained and examined

periodically until data sufficient to meet the objective were

obtained.

No significant skin effects were noted.

Ocular effects varied with the varying exposure conditions.

However, in cases where induction of lens abnormalities were

noted, the abnormalities were minimal in severity. Throughout

the investigation, no animal exhibited serious sight impairment.
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II. Facility

The radiation source used in the research effort was the 88

inch sector focused cyclotron, located at Texas A&M University.

The cyclotron has a capability of accelerating protons to 50 MeV,

deuterons to 55 MeV and alpha particles to 120 MeV. Within the

physical facility there are four irradiation caves, the main

cyclotron vault, and associated laboratory areas. The areas of

interest to this project are indicated in Figure II-1 with the

cyclotron control room indicated by #1, the cyclotron vault by

#2, the cave used for the irradiations by #3, the low level

counting room, where all dosimetry information was recorded #4,

and the staging area for animal preparation outside of the cave

area by #5. The star within Cave 3 indicates the position at

which the beamline was terminated, the transmission chamber

mounted, and the animal irradiations were performed.

The beam is transported from the cyclotron in vacuum through

three inch diameter pipe. To bring the beam into Cave 3, the

protons were diverted out of the cyclotron along the main beam

line, magnetically bent through the 155 degree analyzing magnet,

brought down the far wall of the vault area through a switching

magnet and into Cave 3. The total distance traveled was in ex-

cess of 150 feet. At intervals along the beam line sets of quad-

rapole magnets are located for focusing the charged particle beam.

In addition, sets of slits to restrict the size of the beam and
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large carbon blocks, Faraday cups, to totally block the beam are

also positioned at several locations.

At the termination of the beam line, a mylar film was used

as the vacuum isolation barrier. The incident beam thus passed

through the mylar film, the nitrogen gas and polycarbonate film

electrodes of the transmission chamber, and several inches of

air prior to intercepting the animal being irradiated. The de-

tails of the animal setup at this location will be discussed in

later sections of this report.
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III. Dosimetry

Physical Equipment

The transmission ionization chamber used to monitor the beam

during irradiation is illustrated in Figures III-1 and 111-2.

The chamber is essentially two parallel plate ionization chambers

sharing a common central high voltage' electrode and having a

guard electrode at each extremity. The plate walls are polycar-

bonate plastic film 2 microns thick with 280 angstroms of aluminum

vacuum evaporated on them and the gas medium is dry nitrogen sup-

plied at 0.1 liters per minute. The aluminized conductivity

coating is broken in one case by a vertical insulation barrier

and in the second ionization chamber by a horizontal insulation

barrier of non-aluminized polycarbonate film, thus dividing the

two parallel plate chambers into actually four ionization currents -

an upper and lower from one chamber and a left and a right from

the other chamber. These four signals are then brought out to a

beam balance monitor, Figure III-3 which essentially took the

signals and summed them (the four of them) to achieve a total

signal which was representative of beam intensity. At the same

time a difference signal between the left and the right halves

of the one ionization chamber was developed and this was illus-

trative of the degree to which the beam was uncentered - either

left or right. An error signal was also developed for the upper

and lower ionization chamber indicating out-of-balance in that

direction. These two difference signals were minimized by
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magnetically focusing the beam while at the same time maintaining

the proper intensity as indicated by the sum of all four signals.

Thus, when "balanced" the beam was assumed centered in the beam

pipe and having equal intensity in each of the four quadrants.

To verify this assumption, every beam was recorded using polaroid

film and the uniformity of the image on the exposed film was

visually interpreted to indicate the degree of uniformity.

A more quantitative measurement of uniformity was also made

using lithium fluoride rods in a tissue-equivalent mosaic holder -

as illustrated in Figure III-4. The rods are 1 mm in diameter x

6 mm long and while they have limitations in their use for charged

particle dosimetry, when placed in a common plane perpendicular

to the proton beam they are excellent for indicating uniformity

of the beam throughout that plane.

The absolute calibration of the beam was determined using a

tissue equivalent* extrapolation chamber. This chamber also used

the very thin aluminized polycarbonate film as an entrance window

and is similar in nature to a chamber developed by EG&G and re-

ported in their technical report S-439-R November 1968, Figure

111-5. The central electrode is one-half inch in diameter with

a guard ring about this and an overall chamber diameter of approxi-

mately one and one-half inches. The gas used in the chamber was

tissue equivalent gas composed of 64.4% methane, 32.4% CO2 and

3.2% nitrogen by partial pressure.

*Shonka A-150 Muscle Equivalent Plastic
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Total particle fluence was determined by a Faraday cup which

was a disc-shaped piece of graphite located at the point at which

the animal would be placed and electrically insulated from its

surroundings.

A block diagram of the proton spectrometer system is illus-

trated in Figure III-6. The system is composed of commercially

available equipment and was used to obtain the proton spectra as

it penetrated through various depths in the tissue equivalent

plastic. For the higher energy protons used, the range of the

proton exceeded the sensitive thickness of a single detector.

For these measurements a series of three detectors were run in

parallel into one single preamp and thus into the amplifier sys-

tem and the rest of the system. This technique maximized the

problem of the detector noise but minimized cost in that only one

preamplifier and amplifier were required as opposed to three pre-

amplifiers, three amplifiers and a summing amplifier, which would

have been required, had a separate amplification system been

developed for each detector. The latter technique would have

minimized the total system electronic noise but for the energies

used in this project, noise was not a problem.

The thermoluminescent readout system used for proton beam

uniformity checks was a commercially available TLD readout system

and was used in the conventional manner for this project.
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Equipment Characteristics

Prior to animal irradiations the operational characteristics

were determined when the equipment was used in detection of pro-

ton beams. Saturation curves were first developed for both the

transmission chamber and the tissue equivalent chamber. These

curves are shown in Figures III-7 and III-8. Based on this data

-7
an upper limit of 8 x 10 amps was chosen for the maximum current

which could be produced with the transmission chamber and not

have ion recombination problems. This limit then placed an upper

limit on the proton beam inten sity and the dose rate which could

be achieved. A similar decision was made concerning the extra-

polation chamber and this limit correlated well with the limit

that had been decided on for the transmission chamber. For the

transmission chamber to accurately determine the dose delivered,

a linear correlation was required with the Faraday cup and the

T.E. extrapolation chamber; which were used for the absolute

dosimetry measurements. These correlations are shown in Figures

111-9, III-10, III-11. When applicable, the current limits im-

posed by the saturation curves are indicated. As indicated by

the graphs, there is a very good linear correlation between each

pair of detectors.

Basic Dosimetry Theory

The absolute dose was determined using the fundamental Bragg

Gray cavity theory. The computation of dose was based on the use

of equation 1 below:



16.

-6

CL
E

10-7 , ,

500 700 900 1100 1300 1500

Volts

Figure III-7

Ionization Current vs Chamber

Voltage - Transmission Chamber



17.

-7

E -
01

109 IO

0 45 90 135 180

Volts

Figure 111-8
Ionization Current vs Chamber Voltage-

Tissue Equivalent
Extraplation Chamber



U -

1012 I

Transmission Chamber; Amps

Figure III-9

Transmission Ionization Chamber
Current vs Faraday Cup Current

For 30 MeV Protons

-14-

For 30 MeV Protons



19.

Saturation Limit on TC Current

E

0
C)

._7

-9 I I I I

Io- O9 ,0-8

TE Extrapolation Chamber; Amps

Figure III-10
Tissue Equivalent Ionization Chamber

Current vs Transmission Chamber
Current for 30 MeV Protons



20.

CL
E

>-10

0

TE Extrapolation Chamber; Amps
Figure IIII-i

Tissue Equivalent Ionization Chamber

Current vs Faraday Cup Current for
30 MeV Protons



21.

wal
W joules m cou T

/Kg = Dose Rads _ J coul L gas I ,LJ eq 1

M Kg

where

= Joules/coul for formation of ions = 30.5

TE= Stopping power ratio (variable with proton energy)

LTE gas

[MJ = Kg of gas in sensitive volume of ionization chamber

= (.3346 cm3 )(1.138 x 10-6 Kg/cm 3) = 3.8077 x 10-7 Kg @

O0C and 760 mm Hg

[TPC = Temperature pressure correction to that existing when

chamber was used.

IQ]= Charge collected from ion chamber.

The gas used in the ion chamber was a "tissue equivalent" mixture

composed of 32.4% CO2 , 3.2% N2 , and 64.4% CH4 by partial pressure.

The basic parameters involved in the computation for the various

proton energies are listed in Table III-1.

The electrometer used to measure the charge collected was

calibrated at the Regional Calibration Laboratory in Houston and

is traceable to the National Bureau of Standards. The mass of

gas in the sensitive volume of the chamber was determined using

the measured volume and an accepted density for tissue equivalent

gas. The absolute dose as calculated for each of the cyclotron
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TABLE III-1 - Energy Dependent Dosimetric Parameters

Proton TE Plastic/TE Gas
Energy Stopping Power W/e(J/C)
MeV Ratio

10 1.0107 30.5

20 1.0087 30.5

30 1.0084 30.5

40 1.0075 30.5

50 1.0079 30.5



23.

runs was then related to a given reading on the transmission ion

chamber. From the previously demonstrated linearity between the

two chambers any dose could then be delivered by simply taking

the proper ratio of the transmission chamber readings to the

given dose in the standard calibration of the day.

The Linear Energy Transfer, LET, of the beam was measured

at finite incremental steps and compared to theoretical expression

given by equation 2.

dE 47r z 2 e4 NZ 2 m v2 -( eq 2
ni ) - _ Eq2dx m v i e 2

with the following symbol definitions:

z = Atomic number of charged particle (1 for proton)

e = Electron charge

N = Atom density of absorber

Z = Average atomic number of absorber atoms

m = Electron rest mass

v = Velocity of charged particle

I = Average excitation energy of the absorber

8 = v/c = ratio of charged particle velocity to speed of light

i = Shell correction factor

This equation has been programmed to allow computation of either

a mean range or for generating dE vs dx versus depth curves for

the various energy protons and the materials of interest. The
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program is specific in nature in that it does allow incorporation

of the absorbing effects of the transmission ionization chamber

and the mylar vacuum isolation film in its analysis of the effec-

tive energy which reaches the animal. A complete listing of the

program is included as Appendix 1.

Beam Spread

Although the beam had been brought some 100 feet through an

evacuated pipe and should be at this point and time essentially

parallel in nature, once brought into air nuclear scattering

occurred and the beam diverged slightly with distance. This ef-

fect is illustrated in Figure III-12 for 30 MeV protons. To be

sure that this problem did not hamper us in our research, the

absolute calibration of the beam for each run was performed at

the distance the animals were going to be positioned for their

irradiation. Typically this distance was approximately 3 inches

from the transmission chamber.

Beam Uniformity and Alignment

Beam uniformity was determined in a "macroscopic" nature

using both the Beam Balance Monitor and single sheet polaroid

film. For a detailed measurement the LiF rods in the T.E. mosaic

holder were used. Initially magnetic focusing was utilized to

obtain the spots of desired size, approximately one inch in dia-

meter. The thought behind this being to minimize secondary par-

ticle production and beam contamination due to scatter with the

beam pipe or collimators. The results of several measurements
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for proton measurements made at two different energies and in

depth are shown in Tables III-2 and 111-3. Inspection of the

tables quickly indicates that throughout the area exposed to the

eye there are serious non-uniformities with variations of as much

as 40% in some areas. Attempts were made to correct this by var-

ious focusing techniques, but with a magnetically focused proton

beam, it was not possible to achieve the uniformity we felt was

required.

The magnetic focusing of the beam was then abandoned and

uniformity was achieved by defocusing the beam till it had a

cross sectional area of four to five inches in diameter. Using

aluminum collimators the central portion of the beam was selected

and passed through the transmission chamber. For the beam ob-

tained in this manner, a series of studies were made to determine

if the scattered radiation would pose a problem. It was found

that at the energy levels up to 30 MeV, the scattered radiation

was minimal. The uniformity of the defocused beam was quite ac-

ceptable being plus or minus 5% throughout the whole area of one

inch diameter spot, or one and one-half inch spot as the case

may be, that was used to irradiate the eye. The same defocused

condition was used for the skin irradiations. In this case a

two and a half inch diameter circle was used for irradiation and

Tables III-4 and III-5 indicate the relative dosage throughout

that circle and also illustrate the extent of the beam scattering

and enlargement as it passed through air before it was incident
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TABLE III-2 - Relative dose distribution at dog eye;

Magnetically Focused Beam

20 MeV Protons - 28 January 1971

Zero Depth

0.989 1.18 0.663 1.07 1.10

0.830 0.884 0.881 1.38 0.999

0.036" Depth

0.656 1.000 1.26 1.28 1.09

1.05 0.570 1.000 0.891 1.20

0.066" Depth

0.988 1.18 0.961 0.728 1.22

0.541 0.714 1.14. 1.27 1.11

0.101" Depth

-- 0.904 0.932 1.13 1.05

0.867 0.850 -- 1.18 1.02

0.115" Depth

1.26 1.09 .681 1.47 1.41

.890 1.14 .536 1.08 1.11

0.130" Depth

0.884 0.796 1.09 1.10 1.25

0.963 1.04 1.08 0.894 1.36
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TABLE III-3 - Relative dose distribution at dog eye;

Magnetically Focused Beam

30 MeV Protons - 28 January 1971

Zero Depth

0.712 1.281 1.275 0.931 0.854
0.675 0.951 0.881 0.684 0.595

0.032" Depth

0.673 0.949 1.23 0.782 1.04
0.761 .900 1.05 1.09 .895

0.107" Depth

0.893 1.17 1.12 1.14 0.860
0.746 1.05 0.796 0.724 0.842

0.148" Depth

0.971 0.879 1.22 1.10 1.10
0.890 1.19 0.850 0.770 0.963

0.199" Depth

0.671 1.12 0.963 1.10 0.898
0.853 0.858 1.09 0.864 0.972

0.250" Depth

0.674 1.37 0.927 0.901 1.00
0.895 0.745 1.12 0.931 0.867

0.276" Depth

0.397 1.27 1.38 0.629 0.953
0.715 0.925 1.14 0.658 0.853

0.286" Depth

0.586 1.08 0.912 0.953 1.14
0.808 1.25 1.00 0.811 0.866

0.295" Depth

0.688 0.984 0.938 1.11 0.703
0.828 . 1.11 0.859 1.06 0.750
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TABLE III-4 - Measured relative dose distribution at dog skin

30 MeV Protons - 13 May 1971

.033 .546 .786 .381 .0286
.168 .923 .889 .832 .830 1.06 .038

.366 1.07 1.08 1.01 .137
.877 1.07 1.03 1.11 .926 .984 .438

.713 .877 .854 1.11 .505
.569 .996 .745 1.07 .863 1.00 .459

.0304 .615 .983 .880 .0307

Readings within 2 " D collimator area.

TABLE III-5 - Measured relative dose distribution at dog skin

30 MeV Protons - 20 May 1971

.0505 .551 .961 .140 .035
.273 1.30 1.21 .933 1.03 .881 .0548

.327 1.07 1.00 1.07 .0665
1.10 1.03 1.13 .922 .984 .813 1.07

.172 1.15 .968 .947 .152
.172 .993 .801 1.09 1.07 .989 .291

.0397 1.06 1.09 .903 .0449

Readings within 2%" D collimator area.



30.

on the animals. The radiation field cut-off is actually closer

to a two and three quarter to three inch diameter circle. Again,

over this large a spot the uniformity is seen to be plus or minus

15% which is clearly much better than the magnetically focused

one inch diameter spot was capable of achieving. To further

assist in the alignment of the animals and keep them centered in

the spot, two items were used. The first was a series of cross

hairs constructed from sewing thread which were positioned such

that they were centered in the beam. This was verified with the

photographic film analysis of the beam uniformity in that the

cross hairs offered sufficient absorption such that they showed

in the photograph. The second item was a light located on a re-

movable holder upstream in the evacuated beam line with respect

to the transmission chamber. When the light was swung into the

center of the beam line, a light beam was transmitted through the

intersection of the clear insulating lines that separated the

upper and the lower halves and the left and right halves of the

two parallel plates in the ion chamber. This light beam was then

positioned on central axis and shown directly on the spot that

we wished to be irradiated. The coincidence of the light beam

with the central axis of the radiation beam was verified by film

and proved to be a very convenient method of always properly

aligning the eye or the skin in the beam.
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Hair Absorption Study

Because of the lack of observable effects on the skin at the

dosage used, some concern developed over the amount of energy

which the protons were depositing in the hair of the dogs. To

evaluate this, hair from four 36 centimeter square areas was re-

moved from a dog and weighed to give a value for the mass per

unit area which the proton beam encountered. An average value

of 10.8 milligrams per square centimeter plus or minus. 17% was

obtained. Assuming a chemical composition for the hair of 12.5%

water and 87.5% keratin, the energy deposited in such an absorber

by incident 30 MeV protons was calculated using the computer

code. A total energy loss of .02 MeV was calculated for 30 MeV

protons. Based on calculations of the energy loss in passing

through the transmission chamber, it is logical to expect slightly

larger energy losses for the 10 and 20 MeV instant beams. How-

ever, the magnitude of each would still be too small for this

absorption to significantly affect the range of the particles in

tissue. Thus, the lack of skin effect at the doses which were

used in this study cannot be attributed to the fact that the

animals were not shaved and thus a large energy absorption occurred

in the hair.

Dose Beyond Bragg Peak

Using the computer program representation of the LET distri-

bution, the dose at the Bragg peak and beyond was calculated for

the energies 20 through 50 MeV. The results are tabulated in
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Table 111-6. In essence the results can be summarized by saying

the dose drops rapidly with increasing depth to a value of less

than 1% of the Bragg peak dose and that any unusual artifacts

observed in biological organs located at depths much in access

of the location of the Bragg peak are not due to radiation dosage

at that location.

Results

The incremental LET as measured for 10 MeV protons in T.E.

plastic is illustrated in Figure 111-13. A theoretical computa-

tion using the computer program previously described is included

as well to indicate the degree with which the two concur. There

is some concern as to exactly how high the peak (Bragg peak) truly

is. With the experimental techniques used, we were unable to

measure doses at thickness increments smaller than 1/1000ths of

an inch. It is therefore possible that the actual peak goes

slightly higher than that which has been recorded.

There is also a philosophical concern as to what actually

is a Rad when one is working with highly ionized charged parti-

cles. To be defined accurately, the dose to a given mass would

have to be rather uniformly distributed such that one can indeed

quote in Joules per kilogram or ergs per gram and have it mean-

ingful. With the very narrow Bragg peaks observed, the given

dose rate does not exist for a gram of material but exists only

for a very small mass of material. The doses quoted at the Bragg

peak are based on this AE/AX ratio and is normalized to what



33.

TABLE III-6 - Dose Beyond Bragg Peak

Proton
Energy Depth Dose
(MeV) (cm) (Bragg Peak = 1.00)

20 0.3510 1.0000
0.3808 0.0233
0.4111 0.0015

30 0.7506 1.0000
0.7650 0.352
0.7749 0.0019
0.7980 0.00024

40 1.282 1.0000
1.292 0.254
1.438 0.0329
1.5942 0.0025

50 1.86350 1.0000
1.9570 0.5920
1.9940 0.1960
2.0190 0.0542
2.106 0.045
2.3488 0.0020
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would have existed for a gram of material. The dose used in all

computations has been this Bragg peak dose. Because of the dif-

ficulty in accurately measuring the Bragg peak dose, the entrance

dose was measured for each calibration and using the determined

entrance to peak dose ratios, the equivalent Bragg peak dose was

calculated. It must be emphasized that this method of reporting

dose was requested by the original contract monitor and was con-

trary to what the investigators felt to be a more accurate method

of reporting dose - namely proton fluence incident on the subject

animal.

Proton spectra measured by the lithium silicon spectrometer

system is indicated in Figure III-14 for the 10 MeV protons. The

only interesting point to note here is that the peaks do broaden

as one approaches the lower energies due to energy loss and inter-

action processes which being statistical in nature tend to spread

out the range of energies contained within the proton beam. The

values of energy versus depth are plotted in Figure III-15 and,

if one extrapolates this back to zero thickness an initial energy

leaving the transmission chamber of 8.6 MeV is indicated. This

difference from the nominal 10 MeV that is quoted is due in part

to energy loss in penetrating through the mylar vacuum barrier,

the transmission chamber, the gas gaps within the transmission

chamber and to some extent a deviation of the actual energy ac-

celerated on the part of the cyclotron from 10 MeV.
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Similar results are presented in Figures III-16 thru III-18

with a 20 MeV protop spectra. In this case, the energy leaving

the transmission chamber was calculated to be 19.07 MeV and the

same general comments given for 10 MeV would hold for 20 MeV as

well.

For the 30 MeV data presented in Figures III-19 thru 111-21,

the energy leaving the transmission chamber was determined to be

28.7 MeV. The 40 MeV results are presented in Figures III-22

thru 111-24. The energy leaving the transmission chamber was

38.4 MeV and for the 50 MeV data presented in Figures III-25

thru III-27, the energy leaving the transmission chamber was 47.4

MeV. In the latter two cases, the 40 and the 50 MeV data, there

is some indication of scattered lower energy protons as part of-

the original beam prior to any attenuation through tissue equiva-

lent plastic. This is thought to be due in part to scattering

off the aluminum walls of the vacuum beam transport system by the

beam after it was expanded to allow collimation and transmission

of the central inch and half or two and half inches as the case

may be for animal exposure. Scattering which occurs up the beam

pipe some distance from the transmission chamber can occur and

still pass through the hole in the collimator and thus be inci-

dent on the animal. This scatter contribution can be minimized

by magnetically focusing the beam down to a small diameter but

then one is back to the unacceptable conditions discussed earlier

of major hot and cold spots within the irradiation area.
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Because of the energy of the protons one detector was not

capable of fully absorbing all of the energy and it took three

transmission chambers placed in line to totally absorb the energy.

There is a small dead layer to the front and a slightly larger

one to the rear of each detector and energy lost in these dead

layers is not reflected in pulse put out by the three detectors

in parallel. Thus, if one finds a particle that has a very high

LET right in the region of a dead layer, there is some loss in

the size of the pulse outputed by the detectors for that parti-

cular energy or situation. The spectra, therefore, have to be

interpreted in their total rather than individual details because

only when interpreted in total will these minor artifacts in the

data be compensated for and one can get an accurate impression

as to what is happening as the beam penetrates with depth. There

is also the problem with three detectors that they have to be

physically aligned concentrically and parallel to the proton beam.

That is not to say that the active detection volumes within each

of the three detectors are completely concurrent. The peripheral

edges may or may not extend to the same point in all three detec-

tors. Thus, it is possible for particles to deposit energy in

the active volume of one detector but deposit energy in the non-

active volume in the subsequent detectors. The resultant spectra

is thus distorted and the peaks broadened beyond what would

actually exist.



52.

Comparison with Other Published Data

During the course of the experiment a paper was published

by a group from the Biological Laboratory, University of California,

Davis, in which proton dE/dx measurements in Lucite were measured

for 20, 35 and 45 MeV protons in Lucite. The measuring technique

was to use TLD chips located at various depths in the Lucite and

from this to infer that dE/dx at that location. The shapes of

the curves were contrary to what we had measured and in trying to

determine why the difference between our data and this published

data, an analysis was performed of both our technique and their

technique for determination of dE/dx with depth. The complete

summary of this analysis is included in Appendix 2. It would

suffice at this time to state that we feel the technique of mea-

surement using the lithium fluoride chips is quite adequate for

determination of the uniformity of the beam at a given depth but

due to the physical size of the chips and the rapid variation of

dE/dx with position in the phantom, particularly near' the Bragg

peak, the technique of using the chips is not a valid one and

leads to erroneous results. In addition, based on cursory exami-

nation of the published spectra, one would also have to conclude

that the beam was contaminated with low energy scattered protons

similar to problems we had experienced on prior occasions and

had to redesign our focusing and exposure techniques to avoid.
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IV. Biology

Objective

The objective of this study was to evaluate the possibility

of damage to the lenticular structures of the eye and damage to

the skin which might be induced due to exposure to protracted

low energy proton radiation encountered during manned space

flight.

Methods and Materials

The Texas A&M University Variable Energy Cyclotron was

utilized as the source of proton radiation.

The irradiations were designed to evaluate the ocular and

skin effects of proton radiation with respect to relative effects

of different proton energies, different proton doses, different

irradiation regimes, and latent period for induction of tissue

damage.

In keeping with the objective, it would have been desirable

to perform irradiations utilizing a spectrum of proton energies

similar to that encountered in space. As it was beyond present

capability to duplicate such a spectrum and, in addition, diffi-

cult to interpret results obtained from an energy spectrum,

discrete, monoenergetic protons were indicated. The energies

selected were 10, 20, 30, 40 and 50 MeV as these energies were

within the range of energies of interest in space exploration.

Total doses received ranged from 37.5 rad to 2000.0 rad.
0

Selected doses were based on those necessary to induce lens
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environment. Also considered were its ophthalmological charac-

teristics lending well to examination, its relative ease of

handling and restraint for both irradiation and examination pur-

poses, and its proven susceptibility to development of radiation

cataracts (reported to be a greater susceptibility than man).

Lastly, previous radiation cataract studies utilizing the rabbit

gave this animal some advantage for accurate evaluation of

collected data. Females were used to maintain one sex throughout

the colony thereby avoiding any possibility of breeding during

periods in which animals were held in group cages.

Rabbits were housed in individual rabbit cages in a vivarium.

Each cage was 46 cm x 46 cm x 76 cm with food containers located

at one end and water nipples installed high enough to require

standing located at the other end. This arrangement forced some

degree of mild exercise.

Cage pans were steam cleaned daily and provided with litter.

Individual cages were cleaned on a regular basis. Occasionally,

during transport to the irradiation facility and holding immedi-

ately prior to exposure, animals were held in group cages. Such

transport was in an enclosed air-conditioned van designed speci-

fically for animal transportation.

Food and water were provided ad libitum.

Animal holding rooms within the vivarium were equipped with

an air conditioning system which provided a mixture of fresh and

recirculated air. Temperature of the rooms was maintained at
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opacities from exposures to other types of radiation, i.e.,

primarily neutrons. Since these dosages were in the range pre-

dicted to be encountered on a space journey, they were satisfac-

tory for the skin studies also.

Irradiation regimes for both ocular and skin studies included

total dose administered as a single irradiation, total dose

divided into five daily equal irradiations, and total dose

divided into five weekly equal irradiations.

Again, in keeping with the objective to simulate space

travel conditions, chronic or low dose rate irradiation would

have been desirable. Cyclotron produced chronic irradiations

were not feasible. Thus, chronic irradiation was approximated by

fractionating the total dose. Acute studies necessitated the

use of the single irradiation.

Experimental Animals and Animal Maintenance: Initially the

experimental model for this investigation was female rabbits of

the New Zealand Whitebreed. These were obtained as immature

1.5 to 2 kg animals from a reliable supplier. Rabbits were

examined, including ophthalmic examination, upon arrival to in-

sure they were healthy and free of ocular defects prior to experi-

mentation. The animals were held for a 30-day quarantine period

preceding onset of experimentation. During this period each

animal was tattooed in both ears for identification purposes.

The rabbit was used because of its size, constitution,

availability and proven adaptability to a laboratory colony
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approximately 220 C. In addition, a slight positive pressure

was held in the rooms to aid in avoiding contamination from the

outside environment.

As a preventive measure, rabbits were treated against ear

mites at 30-day intervals by topical application of an insecticide

containing rotenone as the active ingredient.

As the study progressed, AKC registered quality Beagle dogs,

both male and female, were included as an additional experimental

model. This was done to provide an animal model with a longer

life span than the rabbit, this, in that respect, more closely

correlating results with man. Also considered was the reported

finding that the dog exhibits a somewhat lower susceptibility to

radiation induced cataracts than man. Therefore, it was believed

that the choice of experimental models had bracketed the supposed

response of man.

The Beagle was chosen over other canine breeds for much the

same reasons as the rabbit was chosen, i.e., size, constitution,

availability, proven adaptability to colony surroundings, relative

predictable good temperament, and abundance of previously reported

biological parameters and data.

The dogs were obtained from reputable commercial kennels as

16 to 20 week old puppies. Initial routine canine immunizations,

deworming and identification tattooing had been administered at

the kennels prior to shipment. As with the rabbits, dogs were

examined upon arrival to insure health and freedom from pre-
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existing ocular or skin defects prior to introduction into the

experimental program. A quarantine period of at least 30 days

was also provided for the dogs.

Dogs were housed in outdoor runs 2.4 m x 6 m. Runs were

constructed on a concrete slab with chain link fencing. Located

at the rear of every run was a completely enclosed shelter 1.5 m

x 2.4 m. The entire front and roof of the enclosure could be

opened to allow ventilation and cooling during warm weather.

Individual runs were provided with two self-feeders and a

self-waterer. Two feeders were necessary to prevent undue

fighting between dominant animals and more submissive run mates

vying for control of a single feeder. Wooden pallets were sup-

plied in each run to provide dogs an occasional alternative sur-

face upon which to rest.

Each run contained five animals of the same sex. The

arrangement of sexes precluded the possibility of breeding and

pregnancy.

Runs were cleaned daily. Food and water were provided to

the dogs ad libitum.

Immunizations against canine distemper, hepatitis, lepto-

spirosis and rabies were administered at recommended intervals.

Deworming drugs and other routine medications were administered

to the dogs as indicated to maintain good health.

Irradiation Procedure: Throughout the irradiation procedures,

animals were randomly divided into the various groups. Randomizing
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was accomplished through the use of a table of random numbers

and the identification numbers tattooed in each animal's ears.

For the initial exposures, rabbits were divided into three

major groups of approximately 75 animals each. These major

groups received exposure to 10 MeV protons, 20 MeV protons and

30 MeV protons respectively. Each major energy group was further

divided into three subgroups of approximately 25 animals each.

One subgroup received a single acute irradiation; one fractionated

into five weekly equal irradiations; and one into 5 daily equal

irradiations. Additionally, each subgroup contained five dosage

subdivisions of five animals each. These dosage subdivisions

were composed of animals exposed to total doses of 37.5, 75.0,

150.0, 300.0 and 600.0 rad respectively. All major groups, sub-

groups and subdivisions received their respective exposures to

both the eyes and a target area of the skin. An appropriate

group of control rabbits was maintained.

During exposure the rabbit was restrained in a modified

squeeze box leaving the eye and the skin target area (on the mid-

line just anterior to the point of the shoulders) clear of any

obstruction to the radiation beam. Irradiations were always done

to the eye of the rabbit first, then to the skin target of the

same animal. No eyelid retracting device was necessary to insure

that the eye remained open during irradiation. The target, eye

or skin, was "aimed" at a crosshair apparatus placed at the end

of the beam transporting tube, the center of which was in exact
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alignment with the center of the radiation beam itself. This

alignment was determined prior to exposure by photographing the

radiation beam as it passed through the crosshairs. Initially a

beam with a nominal diameter of 2 cm was utilized.

Throughout irradiation the animal was observed visually via

a closed-circuit television monitor to be certain no excessive

movement interferred with the radiation beam striking the target.

After evaluating early data obtained from the original

rabbit irradiations, a group of rabbits totalling 58 animals was

irradiated with single exposure at the 30 MeV energy. This group

was divided into five subdivisions, each containing ten animals

and receiving approximately 150.0 rad, 300.0 rad, 600.0 rad,

900.0 rad, and 1200.0 rad respectively. A sixth group of eight

animals received approximately 1500.0 rad. Irradiations were done

to the eye first on the entire group using a 2 cm diameter beam.

Skin irradiations were then done using a 5 cm diameter beam.

This was followed by two additional 30 MeV energy groups of

about 50 rabbits each. One group was irradiated with five daily

equal fractions; one to five weekly equal fractions. Each was

subdivided into 37.5, 75.0, 150.0, 300.0, 600.0, 900.0 and 1200.0

rad dosage subdivisions. Another group of about 50 rabbits was

irradiated with a single acute irradiation to 20 MeV protons.

This group was subdivided into dosage subdivisions identical to

the two 30 MeV groups.

As trends in data obtained from rabbit irradiations were

developed, dogs were added to the protocol.
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Initially, a group of 100 dogs was used, the entire group

being irradiated with 30 MeV protons. Fifty dogs received a

single acute irradiation and 50 received five weekly equal irra-

diations. Dosage subdivisions for the ocular exposures were

62.5, 125.0, 250.0, 500.0 and 1000.0 rad, each containing ten

animals. Dosage subdivisions for skin irradiations were 1000,

1200, 1400, 1600 and 2000 rad, each containing ten animals.

Both the single and the fractionated groups contained these total

dose subdivisions. An appropriate group of control dogs was

maintained.

The irradiation procedure for dogs was much the same as that

followed for the rabbits. Irradiation was accomplished utilizing

a combination of chemical and physical restraint. Chemical

restraint consisted of a combination sedation/anesthesia produced

by an intramuscular injection of a synthetic narcotic plus pheno-

thiazine-type tranquilizer 10 to 20 minutes prior to irradiation.

Physical restraint consisted of a sling apparatus and sand bag

weights to properly position the dog and prevent movement. Eyelid

retractors were necessary for ocular exposures in the dogs.

Bilateral eye irradiations were performed on each dog followed

by irradiation of two skin patches, one on the forequarter and

one on the hindquarter. Again, the crosshair aiming apparatus

and closed-circuit television were used.

After evaluating results obtained from initial dog irradia-

tions, two additional groups of dogs were included. These two

groups received radiation to the eyes only and none to the skin
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as sufficient data had been gleaned from all previous skin irra-

diations to permit the formation of a definite conclusion

regarding proton radiation effects on the skin. Each of these

two groups was composed of twenty dogs. One group of twenty was

exposed to a single ocular irradiation of 40 MeV protons, ten

exposed to a total dose of 125.0 rad and ten 1000.0 rad. The

remaining group of twenty was exposed to a single ocular irradia-

tion of 50 MeV protons with identical total dose subdivisions.

These final irradiations concluded all animal exposures for

the contract.

Examination Procedures

Immediately following irradiation, animals were examined

weekly. It became apparent that weekly intervals were a greater

frequency of examination than necessary and thereafter rabbits

were examined every 30 days while dogs were examined every 60

days.

Skin evaluation was largely by objective means, mainly by

gross observation. More elaborate evaluating techniques such as

biopsy and microscopic evaluation, skin conductivity tests or

skin secretion evaluation were never indicated by the results

noted grossly.

The ophthalmic examinations were performed in a darkened

room using both direct and indirect ophthalmoscopes and a slit

lamp. Eyes were dilated for examination using 1% atropine solu-

tion. At the time of examination, the examiner had no knowledge
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of the radiation energy, radiation dose, or prior finding for

the various animals. No unusual restraints were necessary for

examination purposes in either rabbits or dogs.

Lens opacities were scored according to the following system:

O - No opacity

+ - Barely detectable opacity

++ - Easily detectable, but not a sight impairing

opacity

+++ - Sight impairing, but not sufficient to result

in blindness

++++ -Animal blind due to lens opacity

While admittedly this was a subjective method of scoring opacities,

there appeared to be no satisfactory objective alternative.

For the purpose of reporting data in a more interpretative

method, a numerical system of grading based on the four-plus

scoring was developed. A numerical value representing degree of

lens opacities for any given group was obtained simply by dividing

the total number of plus signs assigned to that group of animals

by the total number of eyes in the group. Thus, the maximum

possible degree of lens change was a numerical value of 400 indi-

cating every eye in that group was determined to be four-plus

(totally blind). If every eye in a group were determined to be a

two-plus, the numerical value for that group would have been 200.

Photography was attempted in an endeavor to document changes

found within the lens. However, for a variety of reasons
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photographic results proved to be far from satisfactory and this

method of verifying findings was abandoned.

Animals were maintained and examined periodically until data

sufficient to meet the objectives were obtained. In the rabbits

this period was approximately 450 days post irradiation. In the

dogs, this period varied from approximately 700 days to about

1400 days.

Results

With regard to skin effects, no animal, rabbit or dog, sub-

jected to irradiation ever exhibited any truly significant skin

alteration throughout the entire study. No epilation, no erythema,

no edema and no ulceration were ever observed. This held true

even after initial doses and beam diameters were markedly increased

in later irradiations.

The complete experimental design for irradiation of the eyes

is illustrated in Tables 1 thru 3. With respect to ocular effects,

the initial groups of rabbits were considered to be a pilot

study to suggest the optimum way to proceed with further study.

Data obtained from these groups are illustrated in Figures 1

thru 25.

Figure 1 shows the control data for all 3 groups.

Figures 2, 3 and 4 show the results of 30 MeV proton radia-

tions delivered in single, daily, and weekly exposures, respec-

tively. It is to be noted that in all instances doses of 600

and 300 rad are greater than control values. Furthermore, the



TABLE 1: Exposure Schedule For Initial Rabbit Eye Studies

TABLE lA:

10 MeV Protons

Single Exposure Five Daily Exposures Five Weekly Exposures

I I I I I I I I I I I
37 75 150 300 600 37 75 150 300 600 37 75 150 300 600
rad rad rad

TABLE lB:

20 MeV Protons

Single Exposure Five Daily Exposures Five Weekly Exposures

I I11dI I I I !
37 75 150 300 600 37 75 150 300 600 37 75 150 300 600
rad rad rad



TABLE 1: Continued

TABLE IC:

30 MeV Protons

Single Exposure Five Daily Exposures Five Weekly Exposures

37 75 150 300 600 37 75 150 300 600 37 75 150 300 600rad rad rad



TABLE 2: Exposure Schedule For Subsequent Rabbit Eye Studies

TABLE 2A:

20 MeV Protons

I
Single Exposure

37 75 150 300 600 900 1200



TABLE 2: Continued

TABLE 2B:

30 MeV Protons

Single Exposure

i I I I I I
37 75 150 300 600 900 1200 1500

Five Daily Exposures

37 75 150 300 600 900 1200

Five Weekly Exposures

I I I I I I
37 75 150 300 600 900 1200
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TABLE 3A: Exposure Schedule For Dog Eye Studies

TABLE 3A:

30 MeV Protons

I I I
Single Exposure Five Weekly Exposures

I i1 I I I I I
62 125 250 500 1000 62 125 250 500 1000
rad rad

TABLE 3B:

40 MeV Protons

Single Exposure

125 rad 1000

TABLE 3C:

50 MeV Protons

Single Exposure

125 rad 1000
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150 rad dose was greater than control values for daily and weekly

irradiations.

Figures 5, 6 and 7 show the results of 20 MeV proton radia-

tions delivered in single, daily, and weekly exposures, respec-

tively. It is to be noted again that in all instances of doses

of 600 and 300 rad are greater than control values. Of particu-

lar interest is the fact that all doses except 150 rad were above

control values for animals exposed weekly.

Figures 8, 9, 10, 11 and 12 show the results of 30 MeV pro-

tons delivered in single, daily, and weekly exposures at a single

total dose. These data also reflect the greater effects for

higher doses.

Figures 13, 14, 15, 16 and 17 show the results of 20 MeV

protons delivered in single, daily, and weekly exposures at a

single total dose. It was believed that two things were suggested

by this data. First, the relative magnitude of effect is greater

at 20 MeV than at 30 MeV. Second, at least at the lower doses,

protracted irradiation, i.e., daily and weekly, is more effective

in causing lens changes.

Figures 18, 19 and 20 show the results of 10 MeV protons

delivered in single, daily, and weekly exposures at the three

highest single total doses. It was believed that there was no

difference from control values for 10 MeV protons.

Figures 21, 22, 23, 24 and 25 show the results obtained by

combining single, daily, and weekly irradiation data for each
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A 150.0 red. In 5 weekly irradiation$O 300.0 rad.
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Figure 8
O Controls Average degree of tens
a Single change for rabbits

SDaily receiving 30 MeV protons,SWeekly 37.5 rad.
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Figure 10
* Control
A Sintle Average degree of lens change for

Daile rabbits receving 30 MeV protons,
* Daily 150 rad.
SWeekly
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Figure 11
* Control Average lens change for rabbits
A Single receiving 30 MeV protons,r Daily 300 rad.
* Weekly
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Figure 12
* Control Average degree of lens change for
& Single rabbits receiving 30 MeV protons,
* Daily 600 rad.
*t Weekly
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Figure 13
9 Control Average degree of lens change forA Single rabbits receiving 20 MeV protons,6 Daily 37.5 rad.
It Weekly
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Figure 14
* Control Average degree of lens change for
A Single rabbits receiving 20 MeV protons,
N Daily 75 rad.
* Weekly
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Figure 15
* Control Average degree of lens change forA Single rabbits receiving 20 MeV protons,* Daily 150 rad.
0 Weekly
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Figure 16
4P Control Average degree of lens change for
A Single rabbits receiving 20 MeV protons,
* Daily 300 rad.
* Weekly
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Figure 17
* Control Average degree of lens change forA Single rabbits receiving 20 MeV protons,
* Daily 600 rad.* Weekly
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Figure 18
* Control
A Single Average degree of lens changeA Dally 

for rabbits receiving 10 MeV protons,
r Weekly 150 rad.
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Figure 19

SControngle Averag degree of lens change
A Single for rabbits receiving 10 MeV* Daily protons, 300 rad.
* Weekly
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Figure 20
* Control Average degree of lens change
A Single for rabbits receiving 10 MeV
* Daily protons, 600 rad.
* Weekly
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Figure 21
* Controls-20 MeV
0 Controls-30 MeV Average degree of lens changeA 37.5 rd., 20 MeV for rabbits receiving 10, 20,&
X 37.5 rad., 30 MeV 30 MeV protons, 37.5 rad.
X 37.5 rad., 10 MeV
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Figure 22
* Controls-20 MoV Average degree of lens change
A Controls-30 MeV for rabbits receiving 10, 20, &
O 75 red., 20 MeV 30 MeV protons, 75 red.
X 75 rad., 30 MeV
* 75 rad., 10 MeV
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Figure 23
* Controls.20 MeY Average degree of lens change
* Controls-30 MeV for rabbits receiving 10, 20, &A 150rad., 20 MeV 30 MeV protons, 150 rad.X 150 rad., 30 MV
* 150 rad., 10 MoV
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Figure 24
* Controls-20 MeV Average degree of lens change
8 Controls-30 MeV for rabbits receiving 10, 20, &
& 300 rad., 20 MeV 30 MeV protons, 300 rad.
X 300 rad., 30 MeV
* 300 rad., 10 MeV
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Figure 25
* Controls-20 MeV Average degree of leons change
0 Controls- 30 MeV for rabbits receiving 10, 20,
A 600 rad., 20 MeV & 30 MeV, 600 rad.
X 600 tad., 30 MeV
+ 600 rad., 10 MeV
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energy and each dose. These graphs more or less summarize the

data in all graphs previously presented.

While this initial data would not withstand statistical

analysis, it was considered that it did provide some definite

information regarding the ocular effects of proton irradiation.

First, it was felt that the data indicated no effect from

10 MeV protons, and that the effects from 20 MeV protons were

greater in the rabbit than 30 MeV. This was readily explained

in the rabbit. The Bragg peak occurred at the following approxi-

mate depths in the eye:

10 MeV - 0.76 mm

20 MeV - 3.5 mm

30 MeV - 7.6 mm

These depths indicated that the Bragg peak, or peak ionization,

occurred respectively in the anterior chamber, lens, and vitreous

humor of the rabbit eye. Thus, a greater effect at 20 MeV would

be expected.

Second, it was more difficult from the data to determine an

absolute difference in the effects of the different exposure

regimes. Even so, it was felt the data suggested a greater

effect when the irradiations were protracted. It was also felt

that weekly exposures may have been more effective than daily,

particularly at the lower doses.

Third, there was little doubt that the data suggested a

greater effect at the higher doses used.
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Lastly, the data suggested that a latent period was observed.

While the relationship between dose and latent period could not

be determined, it was believed that the latent period at the

higher doses was between 150 and 200 days.

The above data provided the information required to proceed

with the study.

Figures 26 thru 29 illustrate data obtained in subsequent

rabbit exposures.

Figure 26 exhibits data obtained from rabbits exposed to a

single acute irradiation of 20 MeV protons in total doses ranging

from 37.5 rad to 1200.0 rad. Every dosage subdivision within

this group exhibited lens abnormalities greater than control

throughout the post exposure period of study. This difference

became less with increasing time post exposure presumably because

of an increasing degree of lens abnormalities in control eyes

due to normal aging processes. A dose dependent response was

not noted.

Figures 27, 28 and 29 illustrate data obtained from rabbits

exposed to 30 MeV protons in a single irradiation, five daily

fractions and five weekly fractions respectively. All three

groups showed a greater degree of lens abnormalities in exposed

eyes than in control eyes. Again, this difference became less

with advancing age in the animals. There was no really signifi-

cant difference in overall degree of lens changes between the

single and fractionated exposure groups. Also no really apparent



Figure 26
* Control 20 MeV Protons
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Figure 27
SControl

* 37.5 rad. 30 M*V Protons
* 75 rad. Single Exposure
A 150 red. Rabbits
* 300 rad.

600 red.
* 900 red.
X 1200 red.
0 1500 red.
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Figure 28
• Control 0 MeV Protons
* 37.5 rad. $ Daily Exposures
* 75 red. Rabbits
A 150 rad.
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* 600 rad.
o 900 rad.
X 1200 red.
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Figure 29
* Control 30 MeV Protons
* 37.5 rad. 5 Weekly Exposures
* 75 rod. Rabbits
A 150 rod.
O 300 rad.
* 600 rad.
a 900 rad.
X 1200 rod.

180y

160

140

Average 120
Degree
of Lens 100

80

40

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 3o 360 380 400 420

Time Poset Irrladiation (Ocysi

0



101.

dose dependent response was noted except at the higher total

doses received (600.0 to 1500.0 rad) in which the trend of higher

dose, greater response was suggested.

Figures 30 thru 33 illustrate ocular data obtained from

exposed dogs.

Figure 30 summarizes dogs receiving a single acute exposure

to 30 MeV protons in total doses ranging from 62.5 rad to 1000.0

rad. Over the period of study, degree of lens change in the

radiates was not significantly greater than that in the control

animals.

Figure 31 summarizes data obtained from dogs receiving ex-

posures to 30 MeV proton divided into five equal weekly fractions

and total doses ranging from 62.5 rad to 1000.0 rad. Only the

radiates in the highest total dose subdivision (1000.0 rad) ex-

hibited lens abnormalities significantly greater than control.

This trend began at approximately 600 days post exposure and

continued until termination at 1350 days.

Figure 32 exhibits data obtained from dogs receiving a sin-

gle exposure to 40 MeV protons. Two total dose subdivisions are

included, 125.0 rad and 1000.0 rad. Throughout the examination

period the 1000.0 rad subdivisions showed a slightly greater inci-

dence of lens abnormalities than control. This greater incidence

was of so little magnitude that it might be considered insignifi-

cant. With only two exceptions, the 125.0 rad subdivision exhi-

bited less lens abnormalities than control.



Figure 30
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Figure -31
0 Control 30 Mev Protons
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Figure 32
* Control 40 MeV Protons
* 125 rad. Single Exposure
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Figure 33 summarizes data from dogs receiving a single ex-

posure to 50 MeV proton in total doses of 125.0 rad and 1000.0

rad. Lens abnormalities in the 1000.0 rad subdivision were sig-

nificantly greater than control throughout the post exposure

examination period. Those animals receiving 125.0 rad did not

exhibit ocular changes significantly greater than control.

Throughout the entire study, no animal, rabbit or dog, ever

exhibited a fully developed cataract resulting in blindness.

Most lens abnormalities progressed no further than a two-plus

scoring grade in severity (easily detectable, but not sight im-

pairing) with only a minimal of three-plus opacities (sight im-

pairing but not blind).

An accidental finding of some interest did occur during the

course of investigation. Incident to a proposed study unrelated

to this project electroencephalograms (EEG's) were performed on

a small number of dogs receiving proton radiation to the eyes.

Unexpectedly these animals revealed abnormal EEG wave forms.

With this finding, EEG's were performed on dogs from each dosage

subdivision, each proton energy group, and each radiation regime.

Results were read by two qualified examiners, one of which read

them blind.

Certain of the dogs exhibited High Voltage, Slow wave

Activity (HVSA) patterns in the EEG which is interpreted to in-

dicate neuronal necrosis and is indicative of abnormal function.

The abnormal EEG changes appeared to be radiation dose and energy

a
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related. It was not known whether the observed changes in EEG

patterns were regressing or progressing. An attempt to further

evaluate these findings was then undertaken.

Twenty additional adult Beagle dogs were added to the study.

Ten had their eyes irradiated with 50 MeV protons to a dosage

of 1000 rad. Pre-irradiation EEG's in all test animals were

interpreted as normal immature patterns as evidenced by mild to

moderate High Voltage, Slow Activity (HVSA) in all leads. EEG's

performed at 2 weeks and 2, 5, 7 and 10 months post-irradiation

revealed no abnormalities. The only change seen in the tracings

was a gradual reduction in voltage and concomitant increase in

Hertz. Figures 34 thru 39 illustrate this change in one of the

irradiated dogs. This is the normal expected change as the EEG

matures with age of the animal. A normal mature canine EEG is

shown in Figure 40 for comparison.

Control dogs exhibited the same EEG patterns as irradiated

dogs and all were considered normal. Figures 41 thru 46 illus-

trate the EEG changes seen in one of the control dogs.
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385

Figure 34 - Pre-irradiation screening EEG (Dog #HHEAS2) under

pentothal anesthesia characterized by moderate

High Voltage Slow Activity (HVSA) and interpreted as

a normal immature pattern. Calibration marks in

this and all subsequent figures: 20 uv and 1 second.



109.

797

Figure 35 - EEG recording two weeks post-irradiation (Dog #HHEAS2)
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Figure 36 - EEG recording two months post-irradiation (Dog #HHEAS2)
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Figure 37 - EEG recording five months post-irradiation

(Dog #HHEAS2)

0
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Figure 38 - EEG recording seven months post-irradiation

(Dog #HHEAS2)
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Figure 39 - EEG recording ten months post-irradiation (Dog #HHEAS2)
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Figure 40 - Typical intrahemispheric bipolar mature EEG of a normal

anesthetized dog.
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Figure 41 - Initial screening EEG on control dog (Dog #QIZSL6)
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Figure 42 - EEG recording on control dog (Dog #QIZSL6) two weeks

post-irradiation
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Figure 43 - EEG recording on control dog (Dog #QUIZSL6) two

months post-irradiation
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Figure 44 - EEG recording on control dog (Dog #QIZSL6) five

months post-irradiation
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Figure 45 - EEG recording on control dog (Dog #QIZSL6) seven

months post-irradiation
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Figure 46 - EEG recording on control dog (Dog #QIZSL6) ten

months post-irradiation
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V. Conclusions

In summary then, we have measured the spectra, the energy

versus depth and the LET versus depth for the proton energies

used in the irradiations performed, 10, 20, 30, 40 and 50 MeV.

From this data we must conclude that the doses which were quoted

are probably accurate to about 5% based on the constants used.

The secondary effects of absorption by hair, dose beyond the

Bragg peak, beam spread with distance, beam uniformity, were all

considered and either found to be insignificant or a method was

found in which the effect was corrected for. One concern still

remains and that is the quotation of dose. The requirement that

the dose at the Bragg peak be the quoted dose and the dose in

which all exposures were based, is a bit demanding in that it

does require one to make a rather "microscopic" measurement and

use it in a rather "macroscopic" way. As the dose varies rapidly

in the peak area one can only assume that the dose measured in

an infinitesimal thickness indeed exists over a mass as large as

a gram. Within our ability to measure, which was 1/1000th of an

inch of T.E. plastic, we obtained the curves. This is not to say

that the curve did not go higher somewhere in between the area we

were able to measure. The results we have quoted would be in

error to the extent that the peak height was not properly repre-

sented by the experimental measurements made. At the higher

energies it is obvious that there are some problems with scattering.

On earlier dosimetry runs we had found severe scattering at 40
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MeV and for this case the peak entrance ratio was but 2. By

requiring the operator to focus the beam a bit more and being

selective as to where the beam was defocused, the beam was cleaned

up considerably and we were then able to get the data as indicated

in the Figure III-22. With the 50 MeV beam, a very difficult

beam to achieve with the TAMVEC cyclotron because it pushes the

machine to one of its limits of capability, there is still some

evidence of low energy proton scatter contaminating the beam

proper. One can only say that the measured spectra and the dE/dx

curve was that for the beam used to irradiate the animals in the

experiment. Thus, while it may not be truly representative of a

pure 50 MeV proton beam, it is representative of the proton beam

used to irradiate the animals in the experiment.

As with the uncertain method of quoting "rad dose" with

protons, one may also question the method of scoring lens abnor-

malities observed. The types of lesions scored may best be cate-

gorized as small refractile bodies in the lens. These are known

to be pre-cataractous in congenital cataracts in some breeds of

dogs; thus, this was the method chosen. As mentioned above, no

animals were observed to have developed a true cataract at any

dosage or irradiation schedule used.

If our method of scoring lens abnormalities and our method

of quoting proton radiation dosage are acceptable, the radiation

dosages now con idered acceptable in manned space flight should

be satisfactory in so far as results obtained in these animal
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models are concerned. Thus, the primary objective of this study

has been attained. In addition, no untoward skin reactions were

observed in any irradiated animal. When considered in the light

of known skin reactions from other types of radiation, this ob-

servation is somewhat surprising.

As with all studies of this type, there are unanswered ques-

tions as well as factors to be considered in future studies,

should they be indicated. First, we would strongly recommend

that the dosage problems mentioned above be resolved. There must

be a better way. It did not, and still does not, seem appropri-

ate to use the entry dosage. The integral of the specific ioni-

zation curve also creates problems for dosage quotations. It was

suggested that integration of the specific ionization curve over

the body of the lens be used. This, to be accurate, would require

measuring the lens thickness and depth in the eye for each animal.

Even though the rabbits and dogs used were fairly uniform, there

was still a variation in anatomic size.

A question still to be answered concerns the dosage required

to cause proton radiation cataracts. Studies at higher dosage

levels than those used in this study would be required. Even so,

this would be essential for further studies.

It would have been helpful if a standard form of radiation

could have been used for comparison purposes. In other words,

determination of an RBE would have permitted us to take advantage

of a cheaper radiation source as well as data from the published

literature.
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No information was obtained which might be applicable should

radiation modifiers be present. For instance, the high oxygen

content in the space craft environment might well affect the

radiation response.

Lastly, we must conclude that the observed EEG changes in

the dogs whose eyes were irradiated was a chance observation.

There are very real and good reasons to doubt this, but in the

limited study conducted, cause and effect could not be demonstrated.
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APPENDIX 1

dE/dx Computation Program Listing

The program included in the following pages essentially

calculates the LET versus depth or the mean range forra given

absorber, depending on the option chosen, for protons of energies

between 10 - 50 MeV. All of the constants in the theory involved

are clearly defined in comment cards in the program. The pro-

gram has several features which are unique to the experiment at

Texas A&M in that the transmission chamber and the air gap space

between the end of the transmission chamber and the animal are

mocked up in the program. However, this option may or may not

be included depending on options selected in setting up the pro-

gram. The energy loss mechanism is represented by equation 2 of

the main report.
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48 READ, ENIN, XaAPIN, SIGMA

C *..... **************A******

C

C

C THE A'S = NUMBEP OIF ABSMREPS OF A SPECIFIED THICKNESS TO BE *

C USED IN THE DROGRAM.

C A(M) = NUMRER OF 40 MILL THICKNESSES

C Al2) NUMBR OF 70 MILL THICKNESSES *

C A131 = N~lJM9ER OF 10 4ILL THICKNESSES *

C A(4) = NUMBER OF 5 MILL THICKNESS *

C A(5) = NUMDFR OF I MILL THICKNESSFS .

C THE q00S = NUMFR OF )IVISIONS INTO WHICH rACH ABSORBRE SECTION *

C IS TO BE DIVIDE).

C -00(1 = NUMBER OF DIVISIONS IN 40 VILL SECTION*

C .. 000) 
= NUMBER OF DIVISIONS IN 20 MILL SECTION*

S00(3) = NUMBER OF DIVISIfNS IN 10 'ILL SECTION*

C 00(4) = NIJUMBER OF DIVISIONS IN 5 MILL SECTION*

C 0QQ(5) = NUMBEP OF DIVISIONS IN 1 MILL SECTTON*

C .......... *-*C

C

C 
jo****

C TKAIPI 
= 

THICK:FSS 7F THF AIR GA' IN INCHES) BETWEEN THE *

C PFAM T!JRE (OR TRANSMISSION CHAMBER, IF USED) AND THE *

C A"SORnFR HOLOE.

C DINC1 = NUM'EP CF nTVIS.!INS INTO WHICH TKAIPI IS TO BF DIVIDED. *

C TKAIZ2 = THICK'-'ESS OF TIHF AIR GAP lI(! INCHES) ETWFEN THE * .

AC S'ER HOLDEP AND THE DETFTCO . IT SHOULD RE *

C cNTIr'lFn THAT AUTO4ATIC ^lPRECTION WILL RE 4DE FOR *

C THE nECEFLSE IN THE THICK'ESS OF THE GAP DUE TO THE *

C PLACE"ENT IF VAPTUS THICKNFSSES OF ABSCR ER MATEPIAL *

.C TW-EEN THE 'EAM rURF (OP TRANSMISSION CHAMBER, IF *

C UIJF ) A'P 'MF nFTECTOR. HPNCE, AT m0 TIME SHOULD *

THF AI' SAP THICKNESS (TKAiR2) BE LESS THAN THE TOTAL * ........

C AftS.O~DEPE THICKNESS USFO.

C
C . Oi1C2 = NUM'E

P OF DIVISIONS INTO W-41CH TKAIR2 IS TO RE DIVIDED. *

C "J ----- n ACCURATE VALI!E FnR TKaRI9 MUST RE INPJUTFD ONLY IF

.N I'ITAL AIR 79 !. 5 Tn F NCLJDE
r)  IN THE PROGRAM. AN

C ACCU~ArE VALUE F o TKAI? MUST RE INPUJTED ONLY WHEN THE *

C 0,-FCrl . IS BFING UTILIZD *

C 
*

C
50 Eff-, TKATL1, O i, TKAIP?, DIC......

CC
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* THE PRO 
'
N LE'VING THIS AIR GAP = ',G14.7,' 'EV',/rT20,'THE EXPER

*IME)TAL VALOiF USED IN CALCULATING THE NORMALIZING FACTOR = ',
*G14.7,/,T20,THE NOIRMALT7AING FACTOR IFUDFAC) = ',GI4.7,/T20),
*.. NOPMIL T7ATION HAS BEEN PFRFORMED')

226 GO TO .4
227 2 CONTINUE

228 F = E/l.60210-06
229 EE FNI!/1.60?1D-06
230 PRINT 100, E, EE
23 - 00 FODAT 15(/1,T20,'THE PROTON ENERGY INTO THE AIP GAP BETWEFN THE

*BEAM PrRT AND ABSORBER HnLDER = ',G14.7,' MEV',/,T20,'THE ENERGY
*F THE PROTON LEAVING THIS AIR GAP = ',G14.7,' MEV',/,T20,'NO NORM
*ALIZATION IS PERFORMED. ONLY THE INITIAL AIR GAP HAS BEEN CONSIDE
*PED')

232 4 KKK = 1

233 RETURN -

234 EN)

-**WARPU ING** CfVM h OLOCK I/ HAS A DIFFERENT LEHGTH THAN .WASSPECIFIED IN A PREVIOUS SUBPROGRAM 5QEATER LENGTH USED

235 SURPnUTTNE ABSORB(MI)
236 OnUALE PRECISION ATPMLC,RHO,ATWT,ATnMS,TN,SUMAMw ,ATMOFN,

Z *AR, X,YATOrFR ,EXEN,Zl AVE XEN OLOG,.O, Z I NC
237 DIMFNISION ATWTI25), ATOMS25), ATNOI251, EXEN(25),ATOMFRI25)
238 -- CO'MMON Q(4,6I,ZINC(4t6),AVEXENI0),ZBARt( 10),ATMJDEN( 10)RHOO( 0

C
C
C THIS SUJo0UTINE CAL-ULATES THE AVERASE EXCTTATION ENERGY
--- AVEXEN)I THE -AVEPAGE ATOm ICI.NUMER ( ZBARI, AND THE AOm -D STT -
C IATm4OFN) FOO A MATERIAL NlT LISTED 'IN THE PROGRAM LIBRARY.
C

C ATPMLC TIHE NUt!PEQ On ATDMS PER MnLFCULE OF THE ABSORBER. 's
C-NELMTS = THE" 'UME OF ELFMENTS IN THE ASORB9R.
C RHO1 = THF DENSITY OF THE ABSORnER (GICM3 ).*
S- C ATWT = THE A.T-ATIC WEIGHT OF FACH ELEMENT.
C AT

tOS = THE NUM3ER.OF ATOMS OF EACH PARTICULAR ELEMENT PER
C MOLECULE OF THE ABSORBER. -
C ATNO = ATOMIC NJUMRER OF FACH ELEMENT IN THE ABSORBER

C
239 O , ATPMLC
240 REA , NFLMTS, RHO

241- -EO, faTwTiJ), ATIMS(JI, ATND(Ji,J=I,NELMTS)

C
242 - SUJ 4 = 0.0000
243 0

r 1 J=I,NFt.MTS
244 1 '"W = SU'+ATWr(J)*ATOMS(J) .
245 ATMN,:(10) = ( 6.0253023)* RHOI10) *ATPMLC I AMW
245" g 1 (10 ) =. 0.D00

247 0 = 0.00r0
249 Y = .7D-.

249 Dn ? J=1,NFLMrS
250 . . T TPAFRIJ) = A'O)S(JI/TPLC .

251 735 (13l = 7RBall1) + ATfFR(J)*ATNl'(JI
-?----2 -T TF (ATN0(j)-13.000) 45,45,46
2 253 45 EXEUIJ) = ATNOIJ)*(12.0000 + 7.000O/ATNO(J)I

2 4 GO TO 3



.55 46 FXENIJ) = ATN'IJ)*(9.76r00 + A5R.00/(ATNO(J)**1.1I)l
256 3 X = X + AT3MFR (J)*ATNO(J)*DLOG(EXFN(J))
257 2 Y = Y + ATOMFR(J)*ATNO(J)
25 7 = X/Y
259 AVFxENI10) (?.7182818284)**Z
260 PRINT, AVFXEN(IO)
261 RETURN .

262 END

263 FUNCTION S(MIETA)
C
C
C THIS IS A SU9PPOGRAM TO CALCULATE THE SHELL CORRECTION TERM
C
C

26' 4 .. OFUBLF REC ISI nt AVEX EN, ZBAR,ATMDEN, ZINC, ,ETA2, ETA4,ETA6,ETAS
265 COMnO.N O(4,6),7INC(4,6,AVFXFN(10),7RFAR(IO),ATMDEN(10).,RHO(10)
266 FTA? = 1,00OOFO/(ETA**2)
267 FTA4 = ETA2**2
268 ETA6 = E

T
A2**3

269 S = (0.422377000*FTA2 + 0.0304043000*ET,4 -0.0038106f)0O*FTA6)*
(l(.OD-06) *(AVFXEN(MI)**2.0) + (3.5R.8OI9000 ETA2 -0.1667 9 2 0 .00

**ETA4 + 0.00157955DOO*ETA6)*(1.O0-09)*(AVEXEN(MI)**3.0)
270 RETURN
27! END

**WARNING** COMMON RLOC< // HAS A DIFFERENT LENGTH THAN WAS SPECIFIED IN A PREVIOUS SUBPROGRAM GRFATER LENGTH USED

272 FUNCTIN F(MI, ELMASS,VSO,SHELL,BETA)
C

C THIS IS A SU'PROGRAM TO CALCULATE DEI/X
C

273 09LRL E PrSI ! ' 7 1 C C ,71 "C ,AVEXEN, Z BA ATMDEN, ELMASS, V SCSHFLL ,......... ..

ETA , FDL OG
274 0 ' qN 1(4,6), ZINCf ,6) ,AV XN ( 10 ,ZBA (0) ,ATMrEN(10)1 ,.O(10)
275 F = (4.03.141527(4.OZ98-101**4.0)*ATMD NIMI)*AR(Mil(OLOG.

*(2.000*ELvASS*VSO/(AVFXE MFIA)*( 1.ODO0-VSQ/12.q97925010)**2.0 .
s I I I -(e ETA= 2. O)-Se LL/ ZRAR (M I ) ) /( E LMASSVSO)276 RETURN

276 -------
277 END

**WAqNI'G** COl'I1N "LnCK // HAS A DTIFERENT LENGrTH THAN WAS SPECIFIED IN A PREVIOUS SUBPROGRAM GREATER LENGTH USED

27S FUNCTION G(STIGM,TOTIN,XPARIN)

C THIS TS A SURPRCGRAM FOR. THE CALCULATION OF STRAGGLINr, ABOUT
C THE MEAN QANGF XBAR ASSJUMING A GAUSSIAN DISTRIRUTION
CC ,

279 0'll1 0 o;FC lSIOj'! G,STIGSMY,XARIN,TOTIN,H1,H2,H3,H4,H5,H6,ARG?,ZAP, Ul

290 . = 0.7052307940-01
291 H2 = 0).422320123n-01
252 H3 = .9 ,70577?r-02
2 3 H4...4 = 0.1520143n-03
2-, H5 = . 7'567?70-03

5 .H6 = .410639-04
2 T2 I -= XIN- XRAiV )/( )SORTI2. 000) )*SIGMA)

TF (A~A.S(AG2).LF.1.0o-i4) IP,> = O.0000
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337 27 FnDMAT (IHI,l1(/),T20,'THF ARSgnBER MATERIAL UNDER CONSIDEOATION I
*S AIR')

338 28 F)RMAT (1H1,lO(/),T20,'THE ARSRREQ MATERIAL UNER CONSIDERATION I
* TISSUE*)

339 29 FORMAT (IHI, 10/),T?O, THE ARSORAEP MATERIAL UNDER CONSIDERATION I
*S NOT IN THE PpYGRP.AM LIBPARY')

340 30 rORfMAT ( /,T20,'THE INPUT !-NERGY IS = ' ,014.7,' MEV',//,T20,
* THE M~EAN RA'NGE FOr) THE ARSOn RR MATERIAL IS = ',G1.7,
*' INCHS',/i/,T20,'TH STANDARD DEVIATION FOR THE ABSORRER MATERIAL
* IS.= ',G14.7, C 4,///l

341 31 FORMAT g5(/),'20,'THF AIR GAPS ARE BEING INCLUDFD',/,T20,'TKATRI =
* ',G14.7,' INCHES'i/,T20,'TKAIR2 = ',G14.7,' INCHFS',/,T20,'NORMAL
*IZiA

T
ION WILL BE PERFOROFD')

342 32 FORMAT(5(/),T20,'THE AIR GAPS APE BRING INCLUED',/T20,,
*'TKAo0 = ',G14.7,' INCHFS',/,T 0,'KAIR2 = ',G14.7,' INCHES'/,
.*T2.0,'N]ORMALIZA

T
ION WILL NOT 3! PERFOPAMED')

343 33 FnPMAT (5(fl,r20,'NO AIR SAPS ARE [NCLUOEDO'/,T20, NO .NORMALIZATI-O
*! IS oERFORMED')

344 34 FnPMAT ( /,T20,'THE TRANSMTSSInN CHAMBFR IS NOT INCLUDFD IN THE CA
*LCULATIONS' I

345 35 FOPMAT ( /,T20,'THE TDANSMISSION CHAMBER IS INCLUDED IN THF CALCUL
*ATIONS' I

346 36 FORMAT ( /,T20,'THE DETECTOR TS NOT INCLUDED IN THE CALCULATIONS"

347 37- F'n MA ( /,T20,'THE DETECTOR IS INCLUDED IN. THE CALCULATIONS')
348 38 r'RM aT ( /,T2,'STPAGLIN' EFFECTS ARE NEGLECTED')
349 39 F3OMAT ( /,

T
20,'STRAGGLING EFFECTS ARE INCLUDED IN THE CALCULATIO

350 RETURN

351 END

- -- ------- ~

- ------ - --.------ - - - . - - -. - ..-
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APPENDIX 2

Comparison with Other Published Results

The comparison of the proton dosimetry results of the Davis

group with our results has indicated several areas of difference.

Initially the mean ranges based on their published data were

compared with our calculations and significant differences of up

to 95% were found. For instance, the 20 MeV proton range was

calculated to be 141 mills of Lucite whereas a published value

of 275 mills is given. For 35 MeV protons a calculated range of

389 mills was found and a published range of 373, reasonably well

in agreement. For the 45 MeV protons a calculated range of 612

mills was found and an experimental value given in a publication

as 708 mills - again a significant error. We then questioned

ourselves whether our program was calculating the ranges in Lucite

properly. To verify the program accuracy, the values of ranges

for 22, 34 and 46 MeV protons in Lucite were calculated and com-

pared to those listed in the Tables of Energy Loss and Ranges of

heavy charged particles by Barkus and Berger, which was prepared

under contract for NASA by NBS. We agreed with the published

values of Barkus and Berger within 7 tenths of a percent, in all

cases. We therefore came to the conclusion that the ranges in

Lucite for two of the cases are erroneous.
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Using the computer program we next determined the entrance

and the exit dE/dx in lithium fluoride chips positioned in Lucite

for 20, 35 and 45 MeV protons. Using the thickness of 35 mills -

essentially one millimeter - for the lithium fluoride crystals,

which closely approximated the thickness of the crystals used by

the Davis group; the crystals were centered at different depths

in Lucite that approximated the positions chosen by the Davis

group as indicated in their paper. The computer runs were then

made for one chip at a time. This was done to eliminate the

possible large energy degradation which would occur if many crys-

tals were lined up in a single row. The dE/dx of the protons at

the entrance and the exit of the crystals was computed and the

results plotted in Figures Al thru A3. As can be seen from the

20 MeV results, Figure Al, the variation in dE/dx across the

crystals is relatively small until the mean range is approached

at which point the variation becomes considerable. As is plainly

visable, the variation in dE/dx across the crystals centered at

80 mills is relatively large while the dE/dx variation for the

crystal centered at 100 mills is so large that it is difficult

to see how a specific value of dE/dx for that single position

can be obtained. The same results are observed for the 35, and

45 MeV data, Figures A2 and A3. In all cases, the energy of the

protons went to zero before completely traversing the last crystal.

The size of the lithium fluoride crystals used was so large it

appears to us that there is no way to generate an accurate dE/dx
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curve in the Bragg peak region using this technique. The Bragg

peak measurement discrepancy is further illustrated by comparison

of the depth dose peak full width at half maximum versus proton

energy in Table Al. The differences here are obvious and are

consistent with the results one would expect due to the size

problem of the lithium fluoride. The net result of this Bragg

peak measurement discrepancy is reflected in the Bragg peak doses

quoted for the animals irradiated. With the broadening of the

peaks, a larger fluence of protons are required to give a stated

Bragg peak dose. Thus, the total energy deposited per unit of

dose quoted is greater for the peaks which are broadened due to

contamination by scattered protons. Different biological results

per given dose would therefore not be surprising.
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TABLE Al - dE/dx Full Width at Half Maximum

TAMU DAVIS RUSSIAN

10 MeV .13 mm --

20 MeV .57 mm 2.3 mm

30 MeV .9 mm --

35 MeV -- 2.2 mm

40 MeV 1.0 mm --

45 MeV -- 7 mm --

70 MeV -- -- 6 mm


